STOKES PARTICLE IN AN INHOMOGENEOUS
TURBULENT STREAM

V. E. Shapiro UDC 532.582.7

The motion of a small (Stokes) particle suspended in an inhomogeneous turbulent, incompres-
sible viscous stream is considered. It is shown that the nonlinear interrelationship between
the disordered vibrational and translational particle motions in an inhomogeneous field of
turbulent pulsations specifies considerable systematic particle displacement and the trans-
formation of the turbulent medium motion into directed motion. An estimate is made of the
effects for a particle suspended in 2 medium whose pulsation field is stationary and varies

in one direction.

As is known from model problems of mechanics [1] and plasma physics [2], which will receive greater
development later, the nonlinearity of the forced vibrational motion of a particle in a time-periodic force
field whose intensity depends on the coordinates specifies the appearance of average force fluctuations with
respect to the period, which tend to displace a free particle in the domain where the force field intensity is
lowered. It should be expected that an analogous effect is exerted on a particle submerged in a turbulent
fluid or gas by a field of inhomogeneous turbulent pulsations. Let us note that the turbulent stream is always
inhomogeneous, such is the manner of its existence. The pulsation field in boundary layers separating the
turbulent zone from the rest flow zone or from solid boundaries is sharply inhomogeneous, and here the most
noticeable systematic particle displacement should be expected. This is seen in the rapid covering of the
blades of a rotating fan with dust and in other cases. Since a large circle of problems (technological, atmo-
spheric pollution, etc.)is associated with questions of particle precipitation in fluid and gas streams, it is
expedient to estimate the systematic effect mentioned.*

1. EQUATIONS OF MOTION

Let us consider a small spherical particle of diameter d and density p, suspended in an incompress-
.ible turbulent medium of density p and kinematic viscosity v. As d — 0 the particle trajectory is described
by the equation (see Secs. 5 and 7 in [7], for instance)
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where

o = (12v/d)b; b = [3p/(2pe + p); ¢ = (BbIAY vy

u(r, t) and u'(r, t) = du/dt * (uv) u are the unperturbed velocity and acceleration of the medium at the time
t at the location of the particle. The coefficient @ characterizes the Stokes friction force, and the term bu!
is due to the pressure gradient in a stream unperturbed by particles. The third member is the "Basset force"
which takes account of the nonuniformity in the relative particle motion, and f}is the density of the external
forces acting on the particle, including gravity. Equation (1) is used for estimates of d < I, where ! is the
inner scale of turbulence (at distances I the velocity drop in the stream uj is such that lu;/v ~1), and it
will be more exact, the smaller the ratio d/I.

*A set of investigations has been performed on questions of particle transport and deposition in inhomogene-
ous turbulent streams (see [3-6] and the references cited there, for example). However, the factor of dynamic
interrelation between the disordered vibrational particle motion and its average translational motion is in-
adequately discussed in the literature, in our opinion.
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Since the velocity field u(r, t) is characterized by a whole spectrum of time and space scales, (1) is
actually a nonlinear stochastic equation. It conserves its nonlinear character even in the case of homogeneous
isotropic turbulence. Moreover, it is impossible, for example, to consider that the effect of the force f;
yields simply an additive contribution to the resultant motion. Usually (see [8], for example, and Secs. 5 and
7 in [7] and the references cited there), u and u' are assumed random functions of time in analyzing (1),
while their dependence on the coordinates is left outside the field of view. Hence, (1) becomes linear and ad-
mits of the direct determination of all correlation characteristics of the particle motion in terms of the turbu-
lent stream characteristics. In particular, the particle diffusion and the reverse influence of the particles on
the stream are traditionally considered on this basis.

It is conceivable that taking account of the nonlinearity in (1) in problems where effects associated with
the spatial inhomogeneity of the field of turbulent pulsations are investigated specially is important in princi-
ple.

Interaction between the medium and the translational degrees of freedom of the particle is described by
(1). Rotational particle motion relative to the medium also occurs in an inhomogeneous stream. The flow
perturbations which hence originate specify deflections in the trajectory x(t) in addition to those taken into
account in (1). The effect is related to the action of the Coriolis force. As d — 0, the additional deflections
are slight, but taking account of the rotation factor in the consideration of the average motion results in ef-
fects of the same order in d/1 asthe model (1) yields, as willbe shown. Ona sphere which moves transla-
tionally with velocity v and rotates simultaneously with the velocity Q in a fluid at rest, a force transverse
in @ and v acts which equals [9]

Fo = kod®[Q ¥ v] (2)

for flows creeping around the sphere, where k ~ n/8. The experiments (see [10], for example) show the ap-
‘plicability of (2) even for particle rotation in inhomogeneous laminar modes (for Couette flow). It is natural
to assume the validity of (2) for particles in a turbulent stream for which the condition d <1 is satisfied by
understanding v and @ to be the relative translational and rotational particle motions, i.e.,

v(r, ) =1 —u, Q) = ¢ — P, p = (1/2) rotu,

where ¢ is the angular velocity of the particle. It is convenient to convert the force Fg to unit mass of the
sphere. Taking account of the apparent mass, we obtain

o~ (1/2)51Q X 3)

The forces fo must be included in the right side (1). To determine them, let us take into account that the
moment of the forces acting on a nonuniformly rotating sphere in a fluid at rest as d — 0 equals [11]

M = —(7/12)pd°Q — spd*vQ.
The sphere moment of inertia equals (m/60) pod‘r’. Hence, an equation similar to (1) in structure
@ +ag = ap + By + m, +m, (4)
can be written for the rotational motion, where
co = (10v/d*)p; § = 6p/(py + 5p);

P(r, t) and P'(r, t)=dy/dt + (V)9 7)¥ are the unperturbed angular velocity and acceleration of the medium at
the particle location at the time t, my, is the rotational analog of the Basset force, and mj is the moment of
the external forces and the forces associated with the reactions to the force fg. Since the effects of interac-
tion between the translational and rotational motions at the times ~1/Q are small as d — 0 compared to the
effect of the Stokes (~a, @) and inertial (~b, B) forces, then the effect of the forces fQ and their reactions
cannot be taken into account in (1) and (4) in analyzing the motions at the times ~1/Q. Assuming the motions
independent, let us take the average of the right side of (1) and the forces (3) and their total effect and let us
determine the systematic particle displacement. Let us neglect the Basset force and the momentum mjy in
the analysis. Taking them into account makes the exposition awkward, but introduces no principal changes in
the result for small d. Let us also assume f;=0 and my=0. Let us also assume f; # 0 and m] = 0 is
carried out analogously and is not difficult.
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2. "MASSIVE" PARTICLE

Let us consider the simplest case when the particle is entrained slightly by the turbulent motion. For
this, the particle should be sufficiently massive (small b) so that the build-up period l/a would greatly ex-
ceed the pulsation periods yielding the main contribution to wand u'. Large-scale pulsations in the stream
possess the greatest period, and the condition @< we corresponds to a "'massive’' particle, where wg is the
frequency at the maximum of the turbulence spectrum. Since the force to entrain the small particle by a
stream is proportional to its size d, and the inertial force to its volume, i.e., d°, then as d — 0 the approxi-
mation of 2 massive particle cannot be satisfied. This is reflected in @ growing as 1/ d? and the condition
a< we being spoiled. At the same time, the upper bound on d is d <I. Combining both conditions we obtain

125/ Re < I < 1, (5}

where Re = Lup /v is the Reynolds number for the stream, and uy, and L are the velocity scale and the size
of the greatest pulsations.

The relations we ~uy,/L, L/l ~ Re3/ 4, known from the theory of similarity of turbulent pulsations,
were used in obtaining (5). By means of the cond1t1on (5) we have VRe < 1/12b. For a particle in water we
have b~1...0.1, 1.e., 1/12b < 1. Since the flow mode with Re < 1 is not turbulent, then it is impossible to
realize the case of a "'massive' particle in a turbulent stream of water. Appliedto a solid dust particleinair
b ~107%, and Re < 10° is necessary. For example, 0,3<d/l <1 avery narrow range of sizes d, corresponds
to "massive'' particles for Re = 104,

Upon compliance with condition (5), the ratio between the amplitude of particle vibration and the ampli-
tude of liquid-particle oscillation (i.e., the elementary volume of the unperturbed medium) equals a/wg in
order of magnitude and is small. Hence, the spatial dependence of the right sides of (1) and (4) can be con-
sidered smooth at distances on the order of the span of the vibrations r(t), which permits using an averaging
method standard for equations of the type of (1). Assuming

=R +r.,

where 1~ (t) characterizes the oscillation and R(t) is the mean location of a particle with respect to the
time ~ 1/wg, let us expand the right side of (1) (we denote it henceforth by f) in a series in r ~near the aver-
age trajectory r=R(t). Ina first approximation we have

f= i) - (e~}
Yo Lar. =1_, fo =1 — 1), (6)

where the angular brackets denote the average with respect to the time ~1/we and with respect to realiza-
tions of turbulent pulsations for fixed r =R, i.e., the expressions in the angular brackets are the Euler
characteristics of turbulent pulsations.

Let us take into account that the amplitude of pulsations of the magnitude bu'~=b(u' — @')) is much
less than the amplitude of the pulsations au~ = ¢fu—<u>), Indeed,

b ul, 42 u*\ i Re; 4

o u ~ 1oy ((03 _:) 12 VP"’-‘ TTTT_:<1 (7)
where u, and L, are the characteristic amphtudes of the turbulent pulsations and the size of the inhomo-
geneous domaln, Red = ~u,d/v.

The quantity u, is on the order of the dynamic velocity ("'the friction velocity'") in a turbulent boundary
layer, and L, is the characteristic layer thickness. It can hence be considered that (u, L, /v 210). It can
hence be considered that f = au~. Using the spectral representation, we have from (6)

ae’

—w? -~ jaw
— OO

where 2z~ is the random spectral amplitude of u .. in the interval dw. By virtue of the condition of stochasticity
Z>=0, <{Zi(r,do)Zy(r,do’)) = § (0 — &) Wy, (r, 0) dode’,

where 6(w —w') is the delta function and Wyi is the spectral tensor:

Z (R, dm)

T =

Cung (T, t) Uy (r, t)> = 5 Wi (r, 0) do

225



Let us assume for the estimates that the dependence of the spectrum density on w has the very same
form

W o~ k(1 L B, k= g /oe (8)

for all the quantities needed. Such a dependence (see Secs. 3 and 5 in [7]) is interpolated by the spectral
density u’, for isotropic turbulence in the range from the largest vortices (the k* law) including the inertial
subregion of the spectrum [for large k formula (8) does not differ too radically from the k %% law]. Taking
account of (8), we obtain

e 2, j(0—0 )i
[ e (@R o))

{rov)E) ={{ry)au>= 5

L o jaw
X Z*R,do')y = —x?uy)ud = —xiud, wt= I%-(il——;-_:-_?%)g, k, = a/og. 9)
Let us take the average of the force fo. We have
fo = (B/2{[D X ) T+ Ug-— ) X (r~ —u)] ) ). (10)

The quantities @~ and i‘~, which must be substituted into (10), will be calculated for fixed r = R. Taking ac~
count of the small oscillaiions therein is an effect of the next order of smallness in k4. Also taking into ac-
count the inequality (7) and gyL/a¥ . < 1, which is similar, we obtain

oc

. s iod
Ve =r- —u.= 51 — joe® Z(R, do),

jo+a

—

o . ot T
9~=¢~_¢~:-;-mc[ [ —jo® Z(R,dco)].

J Jot+a

-

Hence, under the same assumptions as in the derivation of (9) and taking account of the vector identity
[rot uxu] = @V)u—v(u?/2), we obtain

162
0. x vl = 02) (- y 452), ()

where
PR S Bt ) N
S T TR ST R T 3T T s |7 2™ e

By virtue of the assumptions made, the quantity [ (R ) x (v }] turns out to be much less than the expression
(11) and we will not write it down.

We consequently arrive at a description of the average motion of a massive particle:
R+-aR=adu)--bu>— 2 uld— A—f (v <2 —<uly).

In many problems the turbulence characteristics vary relatively smoothly in space in the direction of the
mean velocity {u). In that case (ulL) = {u'). For a medium described by the Navier—Stokes equation with
divu = 0 we hence have

rot (u;> =~ rot{u’ =vA ot <uy 70,

This means that the pulsating force in (12) cannot be represented as a gradient of some effective potential in
the general case.

The coefficients b and » for forces of pulsating origin in (12) are small compared to the units of the
magnitude of such conditions for a massive particle. Although 'rL‘/b ~a /\/El'awe ~TRel%/d% > 1, but since # is
small, thenu? < b and»? > b are possible. The condition®? «<b is equivalent to b « (1/50Re) d¥/1%, which
corresponds to an ultramassive particle. In the second (more actual) case when b > (1/ 50Re)d/1 4 [but the
inequality (5) is satisfied], we have for the force of pulsating origin in (12)

co Ab_ KUl
fpz—xz(u~>—fv<2 .

Despite the smallness of b/#2, the second member remains here, since the gradient of the pulsation intensity
in an inhomogeneous turbulent stream can greatly exceed the mean acceleration.

Therefore, knowledge of the spatial dependences of the Euler means @), {ul),and (u') permits in-
vestigation the drift of massive particles on the basis of (12).
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3. LIGHT PARTICLE

A particle is entrained more strongly by turbulent motion as a grows, the right sides of (1) and (4) be-
come sharply nonlinear, and the preceding results should undergo qualitative changes for a/ we > 1.

Corresponding to the case of a strong increase is @ > 7, where  characterizes the frequency per
inner scale I in the Lagrange turbulence spectrum [i.e.,in the spectrum of the field u(r(t), t),where r{t) =u
is the velocity of a fluid particlel. The frequency uy /I ~ weVRe corresponds to the scale I in the Euler
turbulence spectrum [i.e., . in the spectrum of u(r, t) for r = const], Since < uy /1, then the particle can
knowingly be considered entrained ("'light") if a> we\/_l_{z, which is equivalent to d/I <+ b. All sufficiently
small particles evidently fall under this condition. Such particles behave at each point almost as unperturbed
fluid particles and the amplitude of the oscillations in the relative distance between the fluid and impurity
particles is much less than the amplitude of the fluid particle vibrations. Let us use this circumstance to
construct an approximate solution.

Let us examine the translational motion of a particle in some small time segment (0, At). Let us
assume

r(t)=s 4§,

where 8 = s(Ty t) is the path of the particle unperturbed by the fluid which is at the point ry= r(0) at the
initial time. For light particles the relative displacement £(t) is mainly oscillatory and small for small At.
Using the averaging procedure, we have in a first approximation

T = (B - <EVD Lar (13)

where the brackets { ) 15 denote the means alongthepathr = s(ry, t); the trajectories s{r), t) are random in
a turbulent stream and the average is carried out with respect to their statistical ensemble, i.e., the brackets
( ) 1aarethe mean Lagrangian characteristics. The equation for ¢ is

du_ (s (1), 1) (14)
de !

E+af=bul(s(s), ) —
where u~ =u~— @)1, Let us integrate (14). Since u'~~ du~ /dt. in the times ~1/a, which are quite small
for "light' particles, then we obtain

2 o
§:w:1>5:£?ggzmdm
An exponential drop in time is characteristic for Lagrangian correlations, hence, we take the a depen-
dence on w of the form

W~ 1/(0® + ofah

for the spectral densities, where wyg ~ 1/T1g; Tya is the time of the drop in the Lagrangian correlations.
Then

<(§V)f>L';,z LEv)and,,= (b — 1)"12,a<(“ V)uDLa, xfa “'f““’La

The correlators {(u) are functions of the initial position of the particle ry. Dividing the whole t interval into
small segments At, let us obtain the mean force (13) with its value of r;in each,

In order to advance the analysis further, we must limit ourselves to the condition of smoothness of the
turbulent field of pulsations, which is that if an integri.LlTLagrangian scale Tyg is selected as the time Aft,

.. La .
the displacement of fluid particles in the time Ty g = j’ ds should be small, on the average, as compared

with the distances within which the turbulence characteristics vary substantially. Since the fluid particles
forget their prehistory during the time Tyg, then the means in (13) become functions dependent on the stream
properties at the site of the mean particle location in each interval Tyg, i.e., functions of R{t). Hence,
()15 has the meaning of a mean displacement velocity of the center of gravity of particles located in a
space with center at the point r=R, @') has the meaning of their mean acceleration, etc.* These charac-

*Let us note that  (u(r, thy,= (ulr, t)) and (u'(r, t)) 4= @'(r, t)) for fluid particles at the point r at
the time t by the definition of the Lagrangian means. We operate with several other characteristics: the
velocity and acceleration of fluid particles averaged with respect to the initial positions in a finite volume
and with respect to a finite time — the characteristic pulsation period.
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teristics agree with the Euler means within the limits of homogeneous isotropic turbulence.

Let us take the average of the force fQ by an analogous method. We have

% eeiot
v=(b—1)5. S L(ny, do),

1 R aaiot
QN ek { 19¢ % 7 £y, do)

2 jo +a
et~ -
Hence,
_ b= b)(1—P) GO TR
fo = % }"La v 2/ _<u”>La :
where
_i oa
Wy +a 2o,
la= o--a aa T
1 T L 2a 42 a
OLa mia

Consequently, we arrive at the following description for the average motion of a light particle:

: b 1 b
R = (a7 upa—

s bl — b)(1 — B), ey, P
#LaU~0py— _(—hi(—i) MalV — - <u~>La) : (15)

The term ~R is omitted, since @ /wyg > 1. In the limit @ — (i.e., d — 0) we obtain R= {W1a, i.e., the
mean drifts of impurity particles and fluid particles agree, as they should. In contrast to (12), no smallness
condition is imposed on the density factor b (and g8) in (15). Let us note that the coefficient for the force of
rotational origin is relatively small, as before, since bAr,a/ M2La~ b(wya/@) S wia/a < 1.

Thus, for light particles the mean force from the stream is expressed in terms of the pulsation charac-
teristics by a formula similar in structure to (12) for the massive particles, but now they are Lagrange
means. Considerably less is ordinarily known about these characteristics than about the Euler means, and
this makes a quantitative analysis of the question difficult. One of the essential differences in the motion of
light and massive particles is that the mean velocity (u)Lainaninhomogeneous turbulent stream has a signif-
icant component in the direction perpendicular to the average flow velocity {u~),which is related to the very
manner of the existence of an inhomogeneous turbulent stream.

4. PARTICLE IN AN INHOMOGENECUS TURBULENT LAYER

Let us apply the theory to the case of a particle in a turbulent incompressible medium whose field
characteristics u are stationary and vary in just one direction (the x, axis) perpendicular to the mean flow
velocity (the x4 axis). Such conditions can be some idealizations of real flows of a liquid and gas in tubes,
near flat walls, in a turbulent medium, and in other cases.

Let us consider the behavior of a massive particle. Its average motion R = (xy, X4, X3) is determined
by (12). For the geometry assumed @ = (U, 00), (u) = (u'.) =(d/dx,) (wu.), where (uyuz)=0,U=
U(x,). The equation of longitudinal particle motion is

2, - alm— U) = —(x2 — b — wb/h)d Quugdida,. (16)
where u; = (u~);. The quantity {uy u, ) is the turbulent shear stress. Because of (uju,) transverse
transport of turbulent velocities inthe stream is realized andgrad (uu,) is directed towards diminishing veloc-

ity pulsations so that d (uju,)/dx, equals zero in the zone of maximum turbulence and has different signs on
both sides of this zone.

To be specific, let us examine the flow in a long pipe. The {uqu,) profile is presented in the Fig. 1
(according to the data of Laufer [7]), where D is the pipe diameter, U, is the mean velocity on the axis, u,
is the friction velocity. The x, axis is directed along the radius from the wall, and all the curves fall to
zero as x, — 0. At the wall {uu,) =0, then {uyu,) takes on negative values, reaches a minimum, and
then grows in the core of the stream by dropping to zero in magnitude. In the stream core (d/dx,) {uqu,y) =
2u?/D, and this quantity has its greatest (negative) value in the zone Xyu, /v ~10-15 and is on the order of
108. ui/D ~U%/D. For an air stream (v = 0.15 cm/sec) moving at a velocity 15 m/sec along a pipe of 10 cm
diameter, Re = 10, ux = 75 cm/sec, 2u%/D =~ 10° cm/sec? ~ g, U3/D ~2-10° em/sec? ~ 2- 102 g, where g
is the acceleration of gravity.
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Let us note that the shape of the turbulence spectrum W for flow in a pipe varies with the change in
distance to the axis and differs for different values of W. The assumption (8) is spoiled, and, strictly speak-
ing, (12) is not legitimate for this case. However, the turbulence spectrum enters the problem in integrated
form; hence, the equations are slightly responsive to deviations from the law (8). It is important that the
Reynolds number for the particle was small at all points of the section and its relaxation frequency a was
much less than the frequency of concentration of the pulsation spectrum u, But this is a constraint on the
frequency and not on the stream.

Let us consider what (16) yields for the case of a particle in a pipe. Forw? > b + Ab/4 the force on the
right in (16) is positive in the layer near the wall and accelerates the particle,T but in the stream core the
force is directed opposite to the mean flow velocity and decelerates the particle. The particles exert the re-
verse effect on the stream: at the wall they decelerate the flow but accelerate it in the stream core. This
occurs because of the energy acquired by the particles from the turbulent pulsations.

Let us clarify the physical reason for this interesting behavior. According to the Navier—Stokes equa-
tion

Foly\ =8 -3 2
\p dt ul/—pa<u1u2>_‘ &;2—-—;—9'\7 sz'

The mean force in an isolated fluid volume from the side of its circumference is on the right and is due to the
pressure p and the viscosity. Thequantity —pd (w,u,)/dx, canbe interpreted as the inertial force, which is

of pulsation origin and is due to vibrations of the isolated volume (on the average it is not accelerated

dU/dt = 0). This force is none other than the resultant Reynolds stress in the volume. The same circum-
ference acts on the impurity particle (with a correction for the effect of the apparent mass), but the inertial
force differs from —pd (uy,uy)/dx,. Cancellation of both kinds of forces does not occur; consequently, a
force additional to the Stokes force appears in (16). Part of it b(d/dx,) (uju,) =b (u’l) is due to the pres-
sure gradient in the surrounding fluid, the term ~%? is related to the translational motion inertia, and the
term ~A is related to the rotational motion inertia. For®? <b + Ab/4 the particle is ultramassive, its pulsa-
tions are quite small, and the force from the side of the circumference predominates and we have the cus-
tomary direction of action of the forces. For®? > b + Ao/4, the pulsation forces predominate; they agree with
the direction of action —pd (uyu,)/dx, and evoke the above-mentioned effect.

Let us examine the transverse particle drift. It is independent of the longxtudmal [the converse is false
as is seen from (16)] and is described by the equation

égf-azﬁz-(x2~b~ﬂ)-§— u§>—hb—d-q2=_f2, an

where q =1/, (ul.) = 1, (u} + u} + u}). As is seen from Fig. 1 the functions (u}) and q? near the wall
have different characters of variation. In the viscous sublayer g2 ~ 0.1 u? y ¥ T Xqu, /v the function (u%)
drops more rapidly than y? as X, — 0, and, therefore more rapidly than ¢? (see Fig. 7.35 in [7]) outside

the viscous sublayer the contribution from ~ dg?/dx, in (17) diminishes, and f, = —u2(d/dx,) (u§) for »?>b,
Therefore, f, changes sign for »? > b in the zone of maximum ( u2 7, i.e., this zone is the "water shed "for

tLet us note that in a viscous sublayer (xu, /v < 1) the pulsating forces can exceed the Stokes force aU,
since (¥?/ aU) for x,u,/v =1, d(uqu,)/dx, ~ 1073 Rea/we.
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the average transverse particle displacement. Corresponding to it is y ~ 5°102; for large y the particles
drift toward the pipe axis and for small y, towards the wall.

The function (u}) is approximated in the range 1 < y < 5102 by the formula (ul) =ul{y/Ay * yy)I?,
where y; = 10 [5]. For %> b in this zone (17) becomes :

TSRS S T

¥y~ 13 (L+w/wop =0, (18)
where 7 = (yo/V2%) (v/ul). The quantity a7y ~ yo(vwe/ul) ~ (vo/Re) (U?/ul) is independent of the particle pa-
rameters and is small [(y,/Re)(U%/u%) £0.1] in a broad band Re >10%, For a7y« 1 the drift is determined
mainly by the time 7. For small a7, we obtain an estimate of the time 7(y) for a particle, which is at the
point y at the time t =0 and is at rest, to reach the viscous layer from (18):

Y= (7/2)T(l +~ .11'/1/0)37/2 + (avo/3ytolyiyel - . - ..

The second member is commensurate with the first for y ~y,vV3n/2a7, ~ 10%. For y <y, T(y) depends slightly
on y and the order 7,. For a particle of density p, =10 g/cm?® in an air stream of the example presented
above we have b=2-107%, w, ~ 3-10% sec™!, I ~ v/u,~2.10"3cm. Letussettheparticlediameterequalto
21072 cm; then @ = 90 sec™!, Weobtain 7y~ 10~! sec. Amassive particle falling freely froma heighty= 50

flies in the stream for a time 7g = v ) (V7u* ~1.4.10-2 sec, i.e., considerably longer.

Let us discuss the case of a light particle. Without having available the information needed about the
Lagrange means which are in (15), let us limit ourselves just to several remarks. For the flow symmetry
under consideration the velocity {u)y,,hasbothlongitudinal andtransverse components (Wra =(ULa, VLa, 0).
It is possible to take ULa ~ U(x,). The transverse velocity Vy 4 is due to the inconstancy of dU/dx,. Inthe zone of
turbulence generation (here | dU/ dx, | is large) Via(x,) is such that the fluid particles drift to layers rela-
tive to the flow at rest. But Vy,a(x,) has an opposite direction in these rest zones; hence, the fluid particles
depart to the generation zone on the average by quenching their vortical energy. There they gather energy
and are again on the path; because of such convection a stationary turbulence mode is maintained. Let us
note that the relative drift of the fluid particles, i.e., the difference between (u)1a and ), is caused by
forces of pulsating origin — the Reynolds stress gradients. The transverse acceleration of the fluid particle
is

’ d 2
(ZL2(1‘, t))La= <u._,_(r, t)> = d_.l'. (u;).
2

Corresponding to the zone of maximum 'generation of turbulence in application to flow in a pipe is y =
yGg ~ 15. For y < yg we should have Via(x,) > 0. Evidently, Vjg(x,) =0 in the viscous sublayer. In the
region y ~10, apparently Via~ 0.1U, (Vg turns out to be of such an order in the extremum zone
d {uqu, )/dx, of a free turbulent jet (see Secs. 5 and 6in [7])). For y > yG, Vyra(x;) < 0. Let us put (U pq=
{u') in (15) (this is legitimate only for slightly inhomogeneous turbulence; hence, we limit ourselves to a
qualitative picture of the motion). Then (l)1a~ @' —(d/dx,) (VLa (u)1,3) and for small b we have for
longitudinal particle motion

o— U — 2L (Cupuyy — UV ).

a dz,

-

It follows from the discussion presented above that the profile of the change in —UVyy is approximately
similar to the profile of {uju,). The action of both members in the parentheses is hence added. The direc-
tion of the action agrees with that which occurred for the massive particles. Hence, the reverse reaction of
the particle on the medium is analogous in character. Since %14 for light particles, then the specific force
per unit mass of the particle is now considerably greater. '

For small b we have for transverse motion

2
Mad oo Mab @ 19
—_ —a— 3;2' u2> Tz dz_2 . ( )

x,— Vi~

Terms whose smallness is on the order of V% _/q? are omitted in the equations. The essential difference
between this equation and (17) is the presence of the member Vya. For y = 10,Vya~ 0.1u, and the terms on
the right in (19) are much less than this quantity in estimates so that the drift of soft particles together with
the fluid particles to the stream core occurs here. The drift velocity Via(x,) drops with the approach to the
viscous sublayer. It can be shown that the drop in Via(x;) should be more rapid than the rate of the drop in
the Reynolds stress. Hence, the role of the terms on the right in (19) becomes predominant near the wall —
here x, < 0. For y~1 and b«1
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where g/a is the rate of gravitational precipitation of particles. For the example with the air stream pre-
sented 2-1072ul/vg ~ 60, i.e., |X,|> g/a.

Let us note that the estimates made are insufficient for a comparison with test, and test, in particular,
verifies the fact of accelerated settling of particles on the wall from the turbulent stream (see [3-5, 12-15],
for examplet). The fact is that individual particles are not observed in experiments (this is complex) but the
rate of deposition of a set of particles on the wall or their distribution over the stream section is. Moreover,
either requires the solution of the diffusion problem, i.e., the solution of the diffusion equation or the kinetic
equation taking account of pulsating forces and some boundary conditions. This important problem for appli-
cations is beyond the scope of this paper.

Therefore, it is shown that disordered motions of a particle, in which it is entrained by the turbulent
medium, result in significant effects, cumulative over many periods of turbulent pulsations. The relationship
between the Stokes frequency of particle relaxation in the stream and the characteristic frequencies of the
turbulence spectrum hence plays an important part. The extreme cases of "'light'' particles (among these are
all particles of small enough size) and of "massive' particles have been investigated.

Equations of the form (12) and (15}, simple in structure, in which the Euler and Lagrange turbulence
characteristics, respectively, enter, have been obtained for the average particle motions in both cases. The
equations merge well, which permits assumption of a possible interpolation of the results in the range of
parameters where a ~we —wy4. A direct analysis in this intermediate region is complicated because of the
lack of a small parameter in the problem. Characteristic for this region is the growth of the contribution to
the average motion from the disordered particle rotations. The rotation factor must be taken into account for
light and massive particles only in the zone where the turbulence is sharply inhomogeneous.

The nature of the particle drift in a turbulent stream between parallel walls has been examined on the
basis of (12) and (15). The theory has been constructed for weakly inhomogeneous turbulence; hence, its ap-
plication to this problem does not assure high accuracy of the estimates, as has been noted. However, the
qualitative behavior is visibly reflected correctly. Among the general qualitative deductions presented here are the
following, 1. The significance of the forces of pulsating origin and their commensurability (converted to unit
particle mass) with the magnitudes of the characteristic accelerations in the stream. 2. The presence of a
watershed for the particle drift motions transverse to the stream, There exists a zone where dense (small
b) particles "are attracted" to the wall, but a zone where the particles "are repelled' from the wall lies suf-
ficiently far from the viscous layer (y 2 5-10%). 3. For particle drift longitudinal to the stream (for which
b is small) the particles leading the flow in the zone near the viscous sublayer and lagging the flow in the
stream core are characteristic. Since the effect is caused by forces coming from the medium, then there
exists a reverse reaction on the stream. Particles turning out to be in the flow core accelerate it and those
being near the wall, decelerate it. The resultant effect depends on the particle distribution over the stream
section. The presence of a small ("passive'') impurity in an inhomogeneous turbulent stream does not thereby
reduce, as is sometimes considered, to just a change in the viscosity of the medium. In addition, the inverse
transformation of turbulent medium motions into directed motions occurs.

Additional forces of pulsating origin on the particle in a turbulent medium appear for the same physical
reason for which effective (sometimes called fictitious) forces expressed in terms of the Reynolds stress act
on fluid particles (i.e., small volumes of the medium). Intrinsically, the Reynolds stresses cause a difference
between the average fluid particle motion and the Euler motion of the medium. This circumstance has been
taken into account in analyzing the Lagrangian characteristics in Sec. 4. Development of this question permits
a new approach to the description of inhomogeneous turbulence. However, this is the subject of a separate
discussion.

TAlthough the mechanism considered for the phenomenon is apparently sufficiently effective, it is not unique.
Many authors tend to the fact that the main mechanical factor (there are others, the particle electrification
factor, for example) is that particles are sometimes ejected from the stream by turbulent gusts and fly
through the viscous layer to the wall by inertia.

231



[

W =am ok W

10.

11.
12.

13.
14,

15.

232

LITERATURE CITED

L. D. Landau and E. M. Lifshits, Mechanics, 2nd ed., Addison-Wesley (1969).

A. V. Gaponov and M A. Miller, " On potential wells for charged particles in a high-frequency electro-
magnetic field," Zh. Eksp. Teor. Fiz., 34, 242 (1958).

N. A. Fuks, Mechanics of Aerosols [in Ru551an] Izd. Akad. Nauk SSSR, Moscow (1955).

E. G. Richardson (editor), Aerodynamic Capture of Particles, Pergamon, London—New York (1960).

C. N. Davies (editor), Aerosol Science, Academic Press, London—New York (1966).

F. E. Marble, "Dynamics of dusty gases," Ann. Rev. Fluid Mech., 2 (1970).

J. O. Hinze, Turbulence, McGraw-Hill (1959). -

S. L. Kuchanov and V. G. Levich, "Energy dissipation in a turbulent gas containing suspended particles,”
Dokl. Akad. Nauk SSSR, 174, 763 (1967).

S. J. Rubinow and J. B. Keller, "The transverse force on a spinning sphere moving in a viscous fluid,"
J. Fluid Mech., 11, 447 (1961).

R. C. Jeffrey and J. R. A. Pearson, "Particle motion in a laminar vertical tube flow," J. Fluid Mech.,
22, 721 (1965),

H. Lamb, Hydrodynamics, 6th ed., Dover (1932).

S. K. Friedlander and H. F. Johnstone, ' Deposition of suspended particles from turbulent gas streams,"
Industr. Eng. Chem., 49, 1151 (1957).

G. A. Schneel, "Particle deposition from turbulent air flow," J. Geophys. Res., 75, 1766 (1970).

T. L. Montgomery and H. Corm, "Aerosol deposition in a pipe with turbulent air flow," J. Aerosol Sci.,
1, 185 (1970).

L. J. Forhey and L. A. Spielman, ""Deposition of coarse aerosols from turbulent flow," J. Aerosol Sci.,

5, 257 (1974).



