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The  mot ion  of a smal l  (Stokes) pa r t i c l e  suspended in an inhomogeneous turbulent ,  i n c o m p r e s -  
sible v i scous  s t r e a m  is  considered.  It is  shown that  the nonl inear  in te r re la t ionsh ip  between 
the d i s o r d e r e d  v ibra t iona l  and t r ans la t iona l  p a r t i c l e  mot ions  in an inhomogeneous f ield of 
turbulent  pu lsa t ions  spec i f ies  cons iderab le  s y s t e m a t i c  pa r t i c l e  d i sp lacement  and the trans-- 
fo rma t ion  of the turbulent  med ium motion into d i rec ted  motion. An e s t ima te  is  made  of the 
effects  for  a pa r t i c l e  suspended in a med ium whose pulsat ion f ield is s ta t ionary  and v a r i e s  
in one direct ion.  

As is  known f rom mode l  p r o b l e m s  of m e c h a n i c s  [1] and p l a s m a  phys ic s  [2], which will  r ece ive  g r e a t e r  
development  l a t e r ,  the nonl inear i ty  of the fo rced  v ibra t iona l  mot ion of a pa r t i c l e  in a t i m e - p e r i o d i c  force  
f ield whose intensi ty depends on the coord ina tes  spec i f ies  the appearance  of a v e r a g e  fo rce  fluctuations with 
r e s p e c t  to the per iod ,  which tend to d isp lace  a f r ee  p a r t i c l e  in the domain whe re  the force  field intensi ty  is 
lowered.  It should be  expec ted  that  an analogous effect  is  exe r t ed  on a pa r t i c l e  s u b m e r g e d  in a turbulent  
fluid o r  gas  by a f ield of  inhomogeneous turbulent  pulsat ions.  Let  us note that the turbulent  s t r e a m  is  a lways 
inhomogeneous,  such is  the m a n n e r  of i ts  exis tence .  The pulsat ion field in boundary  l a y e r s  separa t ing  the 
turbulent  zone f r o m  the r e s t  flow zone o r  f r o m  solid boundar ies  is  sharp ly  inhomogeneous,  and he re  the m o s t  
not iceable  s y s t e m a t i c  p a r t i c l e  d i sp lacement  should be  expected. This  is  seen in the rapid  cover ing  of the 
b lades  of a rota t ing fan with dust and in o the r  cases .  Since a l a rge  c i rc le  of p r o b l e m s  ( technological ,  a tmo-  
spher ic  pollution, etc.)  is  a s soc i a t ed  with quest ions of  pa r t i c l e  p rec ip i ta t ion  in fluid and gas  s t r e a m s ,  it is 
expedient  to e s t i m a t e  the s y s t e m a t i c  effect  ment ioned.*  

1.  E Q U A T I O N S  O F  M O T I O N  

Let  us cons ide r  a smal l  spher ica l  pa r t i c l e  of d i a m e t e r  d and densi ty P0 suspended in an i n c o m p r e s s :  
ible turbulent  med ium of densi ty p and k inemat ic  v i scos i ty  v. As d - -  0 the pa r t i c l e  t r a j e c t o r y  is desc r ibed  
by  the equation ( see  Secs. 5 and 7 in [7], for  instance) 

�9 ~ dT .. 
r ' ~ - a r - . a u ~ - b u '  ~ - c  J ~ ( u ' - - r ) ~ - f l ,  (1) 

where  

a : (12v/d"-)b; b = [3p/(2p0 ~- p); c = ( 6 b / d ) ] f v ' ~ ,  

u ( r ,  t)  and u'  ( r ,  t )  = d u / d t  + (uV) u a r e  the unper tu rbed  veloci ty  and acce le ra t ion  of the med ium at the t ime  
t at the locat ion of the pa r t i c le .  The coeff icient  a c h a r a c t e r i z e s  the Stokes f r ic t ion force ,  and the t e r m  bu'  
is due to the p r e s s u r e  gradient  in a s t r e a m  unper tu rbed  by pa r t i c l e s .  The th i rd  m e m b e r  is the nBasset  fo rce"  
which t akes  account  of the nonuniformity in the re la t ive  pa r t i c l e  motion,  and f l  is  the densi ty o f  the external  
f o r ce s  act ing on the pa r t i c l e ,  including gravi ty .  Equation (1) is used  fo r  e s t i m a t e s  of d < l, where  l is the 
inner  sca le  of turbulence  (at  d is tances  l the veloci ty  drop in the s t r e a m  u l is such that  l u l / v  ~ 1), and it 
will  be  m o r e  exact ,  the s m a l l e r  the ra t io  d / / .  

*A set  of inves t iga t ions  has  been  p e r f o r m e d  on quest ions  of pa r t i c l e  t r a n s p o r t  and deposit ion in inhomogene-  
ous turbulent  s t r e a m s  ( see  [3-6] and the r e f e r e n c e s  c i ted there ,  fo r  example) .  However,  the f ac to r  of  dynamic 
in t e r re l a t ion  between the d i so rde red  v ibra t iona l  p a r t i c l e  mot ion and i ts  ave r age  t rans la t iona l  motion is  in-  
adequately d i scussed  in the l i t e r a tu re ,  in our  opinion. 
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Since the veloci ty field u(r,  t) is cha rac t e r i zed  by a whole spec t rum of t ime and space scales,  (1) is 
actually a nonl inear  s tochas t ic  equation. It conse rves  i ts  nonlinear  cha rac t e r  even in the case  of homogeneous 
i so t ropic  turbulence.  Moreover ,  it is impossible ,  for example, to consider  that the effect of the force fl 
y ie lds  s imply an additive contribution to the resul tant  motion. Usually ( see [8], for example,  and Secs. 5 and 
7 in [7] and the r e fe rences  cited there) ,  u and u '  a re  a s sumed  random functions of t ime in analyzing (1), 
while the i r  dependence on the coordinates  is left outside the field of view. Hence, (1) becomes  l inear  and ad- 
mi ts  of the d i rec t  determinat ion of all cor re la t ion  cha rac t e r i s t i c s  of the pa r t i c l e  motion in t e r m s  of the turbu-  
lent s t r eam charac te r i s t i c s .  In par t icu la r ,  the par t ic le  diffusion and the r e v e r s e  influence of the pa r t i c l e s  on 
the s t r eam are  t radi t ional ly  cons idered  on this basis .  

It is conceivable that taking account of the nonlineari ty in (1) in p rob lems  where  effects assoc ia ted  with 
the spatial inhomogeneity of the field of turbulent  pulsat ions  a re  invest igated specially is important  in p r inc i -  
ple. 

Interact ion between the medium and the t ransla t ional  degrees  of f reedom of the par t i c le  is descr ibed  by 
(1). Rotational pa r t i c le  mot ion relat ive to the medium also occurs  in an inhomogeneous s t ream.  The flow 
per turba t ions  which hence or iginate  specify deflections in the t r a j ec to ry  r(t) in addition to those taken into 
account in (1). The effect is re la ted  to the act ion of the Coriolis  force.  As d - -  0, the additional deflections 
a re  slight, but taking account  of the rotat ion fac tor  in the considerat ion of the average  motion resul ts  in ef-  
fects  of the same o r d e r  in d/l as the model (1) yields ,  as  will be shown. On a sphere which moves t r a n s l a -  
tionally with veloci ty  v and r o t a t e s  s imultaneously with the veloci ty ~2 in a fluid at res t ,  a force t r a n s v e r s e  
in O and v acts  which equals [9] 

Fn = kpd3[~ v. vl (2) 

for  flows creeping  around the sphere,  where  k ~ r / 8 .  The experiments  (see [10], for example) show the ap- 
p l i cab i l i ty  of (2) even for  pa r t i c l e  rotat ion in inhomogeneous l amina r  modes  (for  Couette flow). It is natural  
to a ssume the validity of (2) for  pa r t i c l e s  in a turbulent  s t r eam for which the condition d < l is sat isf ied by 
understanding v and ~ to be the relat ive t ransla t ional  and rotational par t ic le  motions,  i.e., 

v(r, t) = r --  u, .Q(r,t) = qD -- ~, ~ = (1/2) rot u, 

where  q is the angular  velocity of the par t ic le .  It is convenient to convert  the force  F~  to unit mass  of the 
sphere.  Taking account of the apparent  mass ,  we obtain 

f.o ~ (l/2)b[~ 3< v]. (3) 

The forces  f~2 mus t  be included in the r ight side (1). To determine them, let us take into account that the 
moment  of the fo rces  acting on a nonuniformly rotating sphere in a fluid at res t  as d ~ 0 equals [11] 

M = --(~/12)pd~t -- ~)dSv9--. 

The sphere  moment  of iner t ia  equals (r/60) pod 5. Hence, an equation s imi la r  to (1) in s t ruc ture  

can be wri t ten  for  the rotational mot,_'on, where  

~ = (10v/d~)~; fi = 6~/(e0 + 5e); 

r t) and Cv(r, t ) = d e / d r  + (uV)r ~)O are  the unper turbed angular  velocity and accelera t ion of the medium at 
the par t i c le  location at the t ime t, m b is the rotational analog of the Basse t  force,  and In/ is the moment  of 
the external  fo rces  and the fo rces  a s s o c i a t e d  with the react ions  to the force f~ .  Since the effects of in terac-  
tion between the t ransla t ional  and rotational motions at the t imes ~ 1 / ~  a re  small as d ~ 0 compared  to the 
effect of the Stokes (~  a, ~) and inert ial  (~b,/3) forces ,  then the effect of the fo rces  f~2 and their  react ions 
cannot be taken into account in (1) and (4) in analyzing the motions at the t imes  ~ 1 / ~ .  Assuming the motions 
independent, let  us take the average  of the right side of (1) and the forces  (3) and thei r  total effect and let us 
determine the sys temat ic  par t ic le  displacement.  Let us neglect the Basse t  force  and the momentum mb in 
the analysis .  Taking them into account makes  the exposition awkward, but in t roduces  no principal  changes in 
the resul t  for  small  d. Let us also assume fl =0 and m / = 0 .  Let us also assume fl ~ 0 and ml ~ 0 is 
ca r r i ed  out analogously and is not difficult. 
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2. " M A S S I V E "  P A R T I C L E  

Let us consider  the s implest  case when the par t ic le  is entrained slightly by the turbulent motion. For  
this, the par t ic le  should be sufficiently m as s ive  ( small  b) so that the build-up per iod  1/a would great ly  ex- 
ceed the pulsat ion per iods  yielding the main contribution to t, and u% L a r g e - s c a l e  pulsations in the s t ream 
pos se s s  the g rea tes t  period,  and the condition a < 0~ e cor responds  to a "mass ive"  par t ic le ,  where ~ e is the 
frequency at the maximum of the turbulence spectrtlm. Since the force to entrain the small  par t ic le  by a 
s t r eam is propor t ional  to its size d, and the inert ial  force to its volume, i.e., d 3, then as d ~ 0 the approxi-  
mation of a mass ive  par t ic le  cannot be satisfied. This is ref lected in a growing as 1 / d  z and the condition 
a < ~o e being spoiled. At the same time, the upper bound on d is d < l .  Combining both conditions we obtain 

12bV~ee < d"/l'- < 1, (5)  

where  Re = LUL/V is the Reynolds number  for  the s t ream,  and u L and L a re  the velocity scale and the size 
of the g rea tes t  pulsat ions.  

The relat ions we ~ UL/L ,  L/ l  ~ Re 3/4, known f rom the theory  of s imi lar i ty  of turbulent pulsat ions,  
were  used in obtaining (5). By means of the condition (5) we have ~ < 1/12b. For  a par t ic le  in water  we 
have b ~ 1 . . .  0.1, i .e. ,  1/12b < 1. Since the flow mode with Re < 1 is not turbulent, then it is impossible  to 
rea l ize  the case of a "mass ive"  par t ic le  in a turbulent s t r eam of water .  Appliedto a solid dust par t ic le  in a i r  
b ~ 10 -4 , and Re < 10 * is necessary .  Fo r  example, 0.3 < d/l  <1, a v e r y  na r row range of s izes  d, cor responds  
to "mass ive"  pa r t i c l e s  for  Re = 104. 

Upon compliance with condition (5), the rat io between the amplitude of par t ic le  vibration and the ampl i -  
tude of l iquid-par t ic le  oscil lat ion (i.e.,  the e lementa ry  volume of the unper turbed medium) equals a/o~ e in 
o rde r  of magnitude and is small. Hence, the spatial dependence of the right sides of (1) and (4) can be con- 
s idered smooth at distances on the o rde r  of the span of the vibrat ions r ( t ) ,  which pe rmi t s  using an averaging 
method s tandard for  equations of the type of (1). Assuming 

r(t) = R  + r _ ,  

where  r ~ (t) cha rac t e r i ze s  the oscil lat ion and R(t) is the mean location of a par t ic le  with respec t  to the 
t ime ~ 1/w e, let  us expand the r ight side of (1) (we denote it henceforth by f) in a se r i e s  in r ~ n e a r  the ave r -  
age t r a j ec to ry  r = R(t). In a f i rs t  approximation we have 

"~ = ~,, f > + "-, ( ~ v ) f  > ; 
4 | 

"r~ ~ a r ~  ---~ f ~ ,  f ~  = f - -  ( f ) ,  (6) 

where  the angular  b racke t s  denote the average  with respec t  to the t ime ~ l / w e  and with respec t  to r ea l i za -  
tions of turbulent pulsat ions for fixed r =R ,  i.e., the express ions  in the angular  b racke t s  a re  the Euler  
cha rac t e r i s t i c s  of turbulent pulsations.  

Let us take into account that the amplitude of pulsations of the magnitude b u ' = b ( u  r - (u')) is much 
l e ss  than the amplitude of the pulsations au~ = a ( u - < u  >). Indeed, 

b z~" d ~ ( u '  1 d ~ Red d 

where  u .  and L ,  a re  the cha rac te r i s t i c  amplitudes of the turbulent pulsations and the size of the inhomo- 
geneous domain; Re d = ~ u , d / v .  

The quantity u ,  is on the o rde r  of the dynamic velocity ("the fr ict ion velocity") in a turbulent boundary 
layer ,  and L ,  is the cha rac te r i s t i c  l aye r  thickness.  It can hence be considered that (u .  L , / v  > 10). It can 
h e n c e b e  considered that f~  ~ a u ~ .  Using the spectra l  representat ion,  we have from (6) 

i aeJO)t - , r~ = --~---~-]ao~ Z (R; &o), 
- - o o  

where  z~ is the random spect ra l  amplitude of tt ~ in the interval dw. By vir tue of the condition of s tochast ici ty 

<Z> = 0, (Z, (r, dco) Z~ (r, do~')> = 8 (co -- co') W~ (r, co) doJdco', 

where  5(w - w '  ) is the delta function and Wik is the spect ra l  tensor :  

e o  

< u_~ (,:, 0 ,,-,, (r, t)> = ~I w ,h (~, co) dco 
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Let  us a s s u m e  for  the e s t i m a t e s  that  the dependence of the spec t rum density on co has the v e r y  s a m e  
f o r m  

w ..~ k ' / ( l  + k~-) ,, k = o)/tOe (8) 

for  a l l  the quant i t ies  needed. Such a dependence ( see  Secs. 3 and 5 in [7]) is in te rpo la ted  by  the spec t r a l  
densi ty  u 2 fo r  i so t rop i c  tu rbu lence  in the range  f r o m  the l a r g e s t  v o r t i c e s  (the k s law) including the iner t ia l  
subregion  of the s p e c t r u m  [ for  l a r g e  k fo rmu la  (8) does not d i f fer  too rad ica l ly  f rom the k -5/3 law]. Taking 
account  of (8), we obtain 

a2eJ(~--c0')t 
<(r_ V) f) ~ <(r-v) au~> ~ - ~ ~ <(Z (R, de0) V) ;: 

• Z*(R, do)')> =--x~(u~v)u~>----- --u~<u2>, • k2 t §  
= a Tl~ k~3,  k~ = aio~. ( 9 )  

Let  us take  the a v e r a g e  of the fo rce  f a .  We have 

f o =  (b/2){[<~> • <v> ]-4- ( [ ( ~ - - ~ )  X (r_- -u~) ]>  }. (10) 

The quant i t ies  ~p ~ and r ~ ,  which m u s t  be  subs t i tu ted  into (10), will be  ca lcu la ted  for  f ixed r = R. Taking a c -  
count of the s m ~ l  osc i l l a t ions  the re in  is an effect  of the next o r d e r  of s m a l l n e s s  in ka .  Also taking into ac -  
count the inequali ty (7) and f i ~ L / ~  ~ << 1, which is  s i m i l a r ,  we obtain 

i -- Z(R, do)), 
joJe jcot 

1 -- St~176 Z (R, do)) . 9~ = qD~.-- ~~ = ~- rot 1o~ + r 

Hence, under  the s a m e  a s sumpt ions  as  in the der iva t ion  of (9) and taking account  of the vec to r  identity 
[rot u • = (uV)u-V(u2/2) ,  we obtain 

<,,~->k 
<[g~ x v-l> = (~./2) ( u L > - v - - ~ - ) ,  (11) 

w h e r e  
+ ] i a -r 

~.= I  ~,,+ko, 3(I+ko)~ -+ 30T~-~I 'J '  k~,=oclo)e. 

By v i r tue  of  the a s sumpt ions  made ,  the  quantity [ ( ~ )  x ( v ) ]  tu rns  out to be  much  l e s s  than the exp re s s ion  
(11) and we wil l  not wr i t e  i t  down. 

We consequent ly  a r r i v e  at a desc r ip t ion  of the a v e r a g e  mot ion of a m a s s i v e  par t i c le :  

In many  p r o b l e m s  the  tu rbu lence  c h a r a c t e r i s t i c s  v a r y  re la t ive ly  smoothly  in space  in the d i rec t ion  of the 
m e a n  veloci ty  ( u ) .  In that  case  ( u L )  ~ (ut).  F o r  a med ium desc r ibed  by the N a v i e r - S t o k e s  equation with 
div u = 0 we hence have 

rot <u'> ~ mt (u'): = vA mt (u) ~ 0. 

This  m e a n s  that  the pulsa t ing  fo rce  in (12) cannot be  r e p r e s e n t e d  as  a gradient  of some  effect ive potent ia l  in 
the gene ra l  case .  

The coeff ic ients  b and ~t for  f o r ce s  of pulsa t ing  or ig in  in (12) a r e  smal l  c o m p a r e d  to the units of the 
magni tude  of such conditions for  a m a s s i v e  pa r t i c le .  Although>t/b ~ a/q'3-bw e ~ 7Re/2/d2 >> 1, but s ince ~t is 
sma l l ,  t h e n ~  2 << b a n d ~  2 >> b a r e  poss ib le .  The cond i t ion~  z <<b is  equivalent  to b << (1/50Re)  d4//4, which 
c o r r e s p o n d s  to an u l t r a m a s s i v e  pa r t i c le .  In the second ( m o r e  actual) case  when b >> ( 1 / 5 0 R e ) d 4 / l  4 [but the 
inequali ty (5) i s  sa t is f ied] ,  we have  for  the  fo rce  of  pulsa t ing  or ig in  in (12) 

- u  
Despi te  the s m a l l n e s s  of  b / ~  ~, the second m e m b e r  r e m a i n s  here ,  s ince the gradient  of  the pulsa t ion  intensi ty 
in an in_homogeneous turbulen t  s t r e a m  can g rea t ly  exceed  the mean  acce le ra t ion .  

T h e r e f o r e ,  knowledge of the spat ia l  dependences  of  the Eu le r  m e a n s  (u), (u~>, and ( u '  > p e r m i t s  in-  
ves t iga t ion  the  dr i f t  of  m a s s i v e  p a r t i c l e s  on the b a s i s  of  (12). 
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3. LIGHT PARTICLE 

A p a r t i c l e  is  en t ra ined  m o r e  s t rongly by turbulent  mot ion  as  a grows,  the r ight  s ides  of (1) and (4) b e -  
come sharp ly  nonl inear ,  and the p reced ing  r e s u l t s  should undergo quali tat ive changes fo r  a / w e  > 1. 

Corresponding  to the case  of a s t rong  i n c r ea se  is a > ~2 l , where  ~l c h a r a c t e r i z e s  the f requency p e r  
inner  sca le  l in the Lagrange  turbulence  s pec t rum [ i .e . , in  the spec t rum of the f ield u ( r ( t ) ,  t ) ,whe re r ( t ) - - -u  
is  the ve loc i ty  of a fluid par t ic le ] .  The f requency u i / /  ~ O~e R ~ e  co r r e sponds  to the sca le  l i n  the Eu le r  - 
turbulence  s p e c t r u m  [i.e., ~ in the s p e c t r u m  of u(r ,  t) for  r = const] .  Since ~21 < u I / l ,  then the pa r t i c l e  can 
knowingly be  cons ide red  en t ra ined  (" l ight")  if  a > We~f-~,  which iS equivalent  to d/l < ~fb. All suff iciently 
smal l  p a r t i c l e s  evidently fall under  this  condition. Such p a r t i c l e s  behave  at each point a lmos t  as  unper tu rbed  
fluid p a r t i c l e s  and the ampli tude of the osc i l la t ions  in the re la t ive  dis tance between the fluid and impur i ty  
p a r t i c l e s  i s  much  l e s s  than the ampli tude of the fluid pa r t i c l e  vibrat ions .  Let  us use  this c i r c u m s t a n c e  to 
cons t ruc t  an approx ima te  solution. 

Let  us examine  the t rans la t iona l  mot ion  of a pa r t i c l e  in some smal l  t ime  segment  (0, At) .  Let  us 
a s s u m e  

r (t)---- s - ~ ,  

whe re  s = s(r0, t) is  the pa th  of the pa r t i c l e  unper tu rbed  by the fluid which is  at  the point r 0 = r(0) at the 
ini t ial  t ime.  F o r  light p a r t i c l e s  the re la t ive  d i sp lacement  ~(t) is main ly  osc i l l a to ry  and smal l  for  smal l  At. 
Using the ave rag ing  p r o c e d u r e  , we have in a f i r s t  approx imat ion  

T = <f>La~- <(~V)f) La' (13) 

where  the b r a c k e t s  ( ) La  denote the means  along the path r = s ( r  0, t); the t ra j  e c to r i e s  s(r0, t) a r e  random in 
a turbulent  s t r e a m  and the ave r age  is c a r r i e d  out wi th  r e s p e c t  to the i r  s ta t i s t ica l  ensemble ,  i .e . ,  the b r a c k e t s  
( ) La a r e  the mean  Lagrangian  c h a r a c t e r i s t i c s .  The equation f o r  ~ is 

~+a~=bUL(S(t),t) ~(~(t),t) (14) 
dt 

where  t w  = u -  (U>L a. Let  us in t eg ra te  (14). Since u% ~ dUN/dr  in the t i m e s  ~l /a ,  which a r e  quite smal l  
for  " l i gh f '  p a r t i c l e s ,  then we obtain 

, ](0eJC0~ 
~ = ( b  = l) _~2§ Z(r0,d(o ). 

An exponential  drop in t i m e  is  c h a r a c t e r i s t i c  fo r  Lagrangian  co r re l a t ions ,  hence,  we take  the a depen-  
dence on w of the f o r m  

W ~ ~ / ( ~  + ~ ) ,  

for  the spec t r a l  densi t ies ,  where  ~oLa ~ 1 / T L a ;  T L a  is  the t ime  of the drop in the Lagrangian  c o r r e l a t i o n s .  
Then 

2 a 
( (~v) f /~La~  ((~ v) au~}La= (b - -  i)• V)U~}La, •162 

The c o r r e l a t o r s  (u) a r e  functions of the ini t ial  pos i t ion  of the pa r t i c l e  r 0. Dividing the whole t in te rva l  into 
smal l  s egmen t s  At,  let  us obtain the m e a n  fo rce  (13) with i ts  value of r 0 in each. 

In o r d e r  to advance the ana lys i s  fur ther ,  we mus t  l imi t  ou r se lves  to the condition of smoothness  of the 
turbulent  f ield of pulsa t ions ,  which is that  if  an in tegra l  Lagrangian  sca le  TLa  is  se lec ted  as  the t ime  At, ~+rLa 
the d i sp lacemen t  of fluid p a r t i c l e s  in the t ime  T L a  = y ds should be  smal l ,  on the ave rage ,  as  compared  

with the d is tances  within which the turbulence  c h a r a c t e r i s t i c s  va ry  substant ial ly.  Since the fluid p a r t i c l e s  
forge t  t he i r  p r e h i s t o r y  during the t ime  TLa  , then the m e a n s  in (13) become  functions dependent on the s t r e a m  
p r o p e r t i e s  at  the si te of the m e a n  pa r t i c l e  locat ion in each  in te rva l  TLa,  i .e. ,  functions of R(t). Hence, 
(U)La has  the meaning  of a mean  d i sp lacement  ve loc i ty  of the cen te r  of g rav i ty  of p a r t i c l e s  located in a 
space  with cen t e r  at  the point  r = R, (u') has  the meaning  of t he i r  mean  acce le ra t ion ,  e tc .* These  c h a r a c -  

* Let  us note that  (u(r ,  t))La= (u(r ,  t)) and (u '  (r, t)) La -= (u ' ( r ,  t)) f o r  fluid pa r t i c l e s  at the point r at  
the t i m e  t by the definition of the Lagrang ian  means .  We ope ra t e  with s eve ra l  o ther  c h a r a c t e r i s t i c s :  the 
ve loc i ty  and a c c e l e r a t i o n  of fluid p a r t i c l e s  a v e r a g e d  with r e s p e c t  to the init ial  pos i t ions  in a finite volume 
and with r e s p e c t  to a finite t ime  - the c h a r a c t e r i s t i c  pulsa t ion per iod.  
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t e r i s t i c s  a g r e e  w i t h  the  E u l e r  m e a n s  w i t h i n  t he  l i m i t s  of  h o m o g e n e o u s  i s o t r o p i c  t u r b u l e n c e .  

L e t  us  t a k e  the  a v e r a g e  of the force f~ by an analogous method. We have 
i j{oeje t ~ .  - - ,  v = ( b - - l )  /--~--~-g L (re, ace), 

Q = ~ r o t  ~ Z ( r  o,do)) . 

Hence, 
' ~  b(i--b)(l--~)~La( <U~>La a) 

4 v 2 <uL>L , 

w h e r e  
2 ~ a  

1 
).La = ' ~OLaa + a 2eLa 

l__r aa a @ a  " +.-.~- 
~ ~O~a 

Consequen t l y ,  w e  a r r i v e  a t  t h e  fo l lowing  d e s c r i p t i o n  f o r  the  a v e r a g e  m o t i o n  of  a l i gh t  p a r t i c l e :  
o x 

= \U/LaZ- a \ /~ .a  ~ • 1 6 3  - 4a --13);'La V 2 <U--)L �9 (15) 

The  t e r m  ~ i ~  i s  o m i t t e d ,  s i n c e  a / ~ z L a  >> 1. In the  l i m i t  a - - ~  ( i . e . ,  d - -  0) w e  ob t a in  R-= (U>La, i . e . , t h e  
m e a n  d r i f t s  of  i m p u r i t y  p a r t i c l e s  and  f lu id  p a r t i c l e s  a g r e e ,  a s  they  should .  In c o n t r a s t  to (12), no s m a l l n e s s  
cond i t i on  i s  i m p o s e d  on t h e  d e n s i t y  f a c t o r  b ( and  p ) in (15). Le t  us  note  tha t  the  c o e f f i c i e n t  fo r  the  f o r c e  of  
r o t a t i o n a l  o r i g i n  i s r e l a t i v e l y  s m a l l ,  a s  b e f o r e ,  s i n c e  b X L a / Z ~ a  ~ b (c0 La  f a )  ~ ~ L a / a  << 1. 

Thus ,  f o r  l igh t  p a r t i c l e s  the  m e a n  f o r c e  f r o m  the  s t r e a m  i s  e x p r e s s e d  in t e r m s  of  the  p u l s a t i o n  c h a r a c -  
t e r i s t i c s  b y  a f o r m u l a  s i m i l a r  in s t r u c t u r e  to (12) f o r  t he  m a s s i v e  p a r t i c l e s ,  but  now they  a r e  L a g r a n g e  
m e a n s .  C o n s i d e r a b l y  l e s s  i s  o r d i n a r i l y  known about  t h e s e  c h a r a c t e r i s t i c s  than  about  the  E u l e r  m e a n s ,  and  
t h i s  m a k e s  a q u a n t i t a t i v e  a n a l y s i s  of  the  q u e s t i o n  d i f f icu l t .  One of  the  e s s e n t i a l  d i f f e r e n c e s  in t he  m o t i o n  of  
l i gh t  and  m a s s i v e  p a r t i c l e s  i s  t ha t  the  m e a n  v e l o c i t y  <U)La in an i n h o m o g e n e o u s  t u r b u l e n t  s t r e a m  h a s  a s i g n i f -  
i c a n t  c o m p o n e n t  in  the  d i r e c t i o n  p e r p e n d i c u l a r  to the  a v e r a g e  flow v e l o c i t y  <u~) ,wh ich  i s  r e l a t e d  to the  v e r y  
m a n n e r  of  the  e x i s t e n c e  of  an  i n h o m o g e n e o u s  t u r b u l e n t  s t r e a m .  

4 .  P A R T I C L E  IN A N  I N H O M O G E N E O U S  T U R B U L E N T  L A Y E R  

Le t  us  a p p l y  the  t h e o r y  to the  c a s e  of a p a r t i c l e  in a t u r b u l e n t  i n c o m p r e s s i b l e  m e d i u m  w h o s e  f i e ld  
c h a r a c t e r i s t i c s  u a r e  s t a t i o n a r y  and  v a r y  in  j u s t  one  d i r e c t i o n  ( the  x 2 a x i s )  p e r p e n d i c u l a r  to the  m e a n  flow 
v e l o c i t y  ( the  x 1 a x i s ) .  Such c o n d i t i o n s  can  b e  s o m e  i d e a l i z a t i o n s  of  r e a l  f lows of  a l i q u i d  and g a s  in t u b e s ,  
n e a r  f i a t  w a l l s ,  in  a t u r b u l e n t  m e d i u m ,  and  in o t h e r  c a s e s .  

Le t  us  c o n s i d e r  the  b e h a v i o r  of  a m a s s i v e  p a r t i c l e .  I t s  a v e r a g e  m o t i o n  R = ( x 1, x 2, x 3 )  i s  d e t e r m i n e d  
b y  (12). F o r  t he  g e o m e t r y  a s s u m e d  (u> = (U, 0 0 ) ,  <U'> = <tlt~,,> = ( d / d x  2 ) <U2U~>, w h e r e  <u2u 3 ) = 0, U = 
U ( x  2 ). The  e q u a t i o n  of  l o n g i t u d i n a l  p a r t i c l e  m o t i o n  i s  

"" �9 = . .u lu~ydx, ."  (16) x 1 a ( x l - -  U)  - - ( z  ~ - -  b - -  Zb /4 )d  / " ' 

w h e r e  u t = ( t ~ )  1. The  quan t i ty  <u 1 u z > i s  t he  t u r b u l e n t  s h e a r  s t r e s s .  B e c a u s e  of  <utu~. > t r a n s v e r s e  
t r a n s p o r t  of  t u r b u l e n t  v e l o c i t i e s  in  the  s t r e a m  i s  r e a l i z e d  and g r a d  <ulu 2> i s  d i r e c t e d  t o w a r d s  d i m i n i s h i n g  v e l o c -  
i ty  p u l s a t i o n s  so tha t  d ( u l u  2 ) /dx  2 e q u a l s  z e r o  in t he  zone  of  m a x i m u m  t u r b u l e n c e  and  has  d i f f e r e n t  s i g n s  on 

b o t h  s i d e s  of  t h i s  zone.  

To b e  s p e c i f i c ,  l e t  us  e x a m i n e  the  f low in a long  p ipe .  The  <UlU 2 > p r o f i l e  i s  p r e s e n t e d  in the  Fig .  1 
( a c c o r d i n g  to  the  da t a  of  L a u f e r  [7]), w h e r e  D i s  the  p i p e  d i a m e t e r ,  U0 i s  t he  m e a n  v e l o c i t y  on t h e  a x i s ,  u .  
i s  the  f r i c t i o n  v e l o c i t y .  The  x 2 a x i s  i s  d i r e c t e d  a long  the  r a d i u s  f r o m  t h e  w a l l ,  and  a l l  t he  c u r v e s  fa l l  to 
z e r o  as  x 2 ~ 0. At  t he  w a l l  <ulu 2 > = 0, then  <u lu  2 > t a k e s  on n e g a t i v e  v a l u e s ,  r e a c h e s  a m i n i m u m ,  and  
then  g r o w s  in t he  c o r e  of  the  s t r e a m  b y  d r o p p i n g  to z e r o  in  m a g n i t u d e .  In t he  s t r e a m  c o r e  ( d / d x  2) <u lu  2 ) 
2u2, /D,  and  t h i s  quan t i t y  has  i t s  g r e a t e s t  (nega t ive )  v a l u e  in t he  zone  x 2 u . / v  ~ 10-15  and  i s  on the  o r d e r  o f  
108. u2 , /D ~ U ~ / D .  F o r  an  a i r  s t r e a m  (v = 0.15 c m / s e c )  m o v i n g  a t  a v e l o c i t y  15 m / s e c  a long  a p i p e  e l l 0  cm 

d i a m e t e r ,  R e  = 105, u ,  = 75 c m / s e c ,  2 u ~ / D  - 10 s e r a / s e e  2 ~ g, U~/D ~ 2 . 1 0 5  e m / s e c  2 ~ 2 -  102 g, w h e r e  g 
i s  t he  a c c e l e r a t i o n  of  g r a v i t y .  
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Fig. 1 

Let us note that the shape of the turbulence spect rum W for  flow in a pipe var ies  with the change in 
distance to the axis and differs for different values of W. The assumption (8) is spoiled, and, s t r ic t ly  speak- 
ing, (12) is not legi t imate for  this case. However, the turbulence spect rum enters  the problem in integrated 
form; hence, the equations a re  slightIy responsive  to deviations from the law (8). It is important  that the 
t teynolds number  for  the par t ic le  was small at all points of the section and its relaxation frequency a was 
much less  than the frequency of concentrat ion of the pulsation spect rum u. But this is a constraint  on the 
frequency and not on the s t ream.  

Let us cons ider  what (16) yields for  the case  of a par t ic le  in a pipe. F o r ~  2 > b + Xb/4 the force on the 
right in (16) is posi t ive in the l ayer  near  the wali and acce le ra tes  the part icle ,  t but in the s t r eam core  the 
force  is directed opposite to the mean flow veloci ty and decelera tes  the par t ic le .  The par t ic les  exert  the r e -  
ve r se  effect on the s t r eam:  at the wall they decelera te  the flow but acce le ra te  it in the s t ream core. This 
occurs  because  of the energy acquired by the pa r t i c l e s  f rom the turbulent pulsations. 

Let us clar i fy the physical  reason for this in teres t ing behavior.  According to the N a v i e r - S t o k e s  equa- 
tion 

p ~/- ul . . - -  dzo p v  dx~ U.  

The mean force  in an isolated fluid volume from the side of its c i rcumference  is on the right and is due to the 
p r e s s u r e  p and the viscosi ty.  The quantity - p d  (ulu2)/clx e canbe  in terpreted as the iner t ia l  force ,  which is 
of pulsat ion origin and is due to vibrat ions of the isolated volume (on the average  it is not acce le ra ted  
dU/d t  - 0). This force  is none other  than the resul tant  Reynolds s t r e s s  in the volume. The same c i r cum-  
ference acts  on the impuri ty  par t ic le  (with a cor rec t ion  for the effect of the apparent m a s s ) ,  but the inertial  
force  differs  f rom - p d  (ul,u2)/dx ~. Cancellation of both kinds of forces  does not occur ;  consequently, a 
force additional to the Stokes force appears  in (16). ]Part of it b (d /dx~)  ( u l u  2 } = b (uY 1 ) is due to the p r e s -  
sure  gradient  in the surrounding fluid, the t e rm ~~t 2 is re lated to the t ransla t ional  motion inertia,  and the 
t e r m  ~2t is re la ted  to the rotational motion inertia.  F e r n  2 < b + Xb/4 the par t ic le  is u l t ramass ive ,  its pulsa-  
tions are  quite small ,  and the force  f rom the side of the c i rcumference  predominates  and we have the cus-  
t omary  direct ion of action of the forces .  F o r ~  2 > b + Xb/4, the pulsation forces  predominate;  they agree  with 
the di rect ion of a c t i o n - p d  (ulu2)/dx 2 and evoke the above-mentioned effect. 

Let us examine the t r a n s v e r s e  par t ic le  drift. It is  independent of  the longitudinal [the converse  is false 
as is seen f rom (16)] and is descr ibed by the equation 

" " ( k b \  d 2,  ~.b d 2 . 
x ,  --:-ax 2 = - -  •  ) _ T - ~ x . , . q  = f~, (17) 

where  q2 = 1/2 ( u 2 >  = 1/2 (u 2 + u2 z + u~ ). As is seen f rom Fig. 1, the functions (u~) and q2 near  the wall 
have different cha rac te r s  of variation. In the viscous sublayer  q2 ~ 0.1 u2.y 2, y = x 2 u , / u  the function (u~) 
drops m o r e  rapidly than y2 as x 2 ~ 0, and, the re fore  m o r e  rapidly than q2 (see Fig. 7.35 in [7]), outside 
the viscous sublayer  the contribution f rom ~ dq2/dx2 in (17) diminishes,  and f2 TM -~t2(d/dx2) (t~) f o r ~  2 >>b. 
Therefore ,  f2 changes sign for  ~ >> b in the zone of maximum ( u~) ,  i .e. ,  this zone is the " w a t e r s h e d " f o r  

~Let us note that in a viscous sublayer  (xzu , / u  < 1 ) the pulsat ing forces  can exceed the Stokes force  aU, 
since 042/ aU) for  x 2 u . / v  = 1~ d ( u l u 2 ) / d x  2 ~ 10 -3 Rea/coe. 
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t h e  average  t r a n s v e r s e  par t i c le  displacement.  Corresponding to it is  y ~ 5" 102 ; for  l a rge  y the par t ic les  
drift  toward  the pipe axis  and fo r  small  y, towards  the wall. 

The function (u~)  is approximated in the range 1 < y < 5" 102 by the formula  ( u l )  = u2.[y/(y + y0)] 2, 
where  Y0 ~ 10 [5]. For  ~2 >> b in this zone (17) becomes  

t y (18)  

where T 0 = (Y0/~2"~ (V/U2,). The quantity aTo "~ Y0 (VCOe/U2,) ~ (Y0/Re) (U2/u2*) is independent of the particle pa- 
rameters and is small [(y0/Re)COZ/u~J ~ 0.1] in a broad band Re > i0 4. For aT0<< 1 the drift is determined 
mainly by the time r0. For small a~0 we obtain an estimate of the time V(y) for a particle, which is at the 
point y at the time t = 0 and is at rest, to reach the viscous layer from (18): 

"~y= (n12)%(1 @ y/go) 3/2 + (a%13)%(ylYo) 3 § . . . . .  

The second m e m b e r  is commensura te  with the f i rs t  for  y ~ Y 0 ~  ~ 102. For  y < y0,v(y) depends slightly 
on y and the o r d e r  70. For  a pa r t i c le  of density P0 = 10 g/crn3 in an a i r  s t r eam of the example presented  
above we have b = 2 �9 10 -4, co e ~ 3 �9 102 sec -1, l ~ v / u ,  ~2  �9 10-3cm. L e t u s  s e t t h e p a r t i c l e  d i amete r~qua l to  
2 . 1 0  -2 cm; then a = 90sec  -1. Weobta inT0~ 10 -1 sec.  A m a s s i v e p a r t i c l e f a l l i n g f r e e l y f r o m a h e i g h t y =  50 
fl ies in the s t r e a m  for  a t ime Vg = ~ (2y/g) iv/U,) ~ 1 .4 .10-2 sec, i .e. ,  considerably  longer.  

Let us d iscuss  the case  of a light par t ic le .  Without having available the information needed about the 
Lagrange  means  which a re  in (15), let us l imit ourse lves  just  to severa l  r emarks .  For  the flow symmet ry  
under considerat ion the veloci ty  (U)Lahas both longitudinal and t r a n s v e r s e  components (U)La = (ULa, VLa, 0). 
It is possible  to take ULa ~ U(x2). The t r a n s v e r s e  ve lec i tyVLa  is due to the inconstancy ofdU/dx 2. Inthe zone of 
turbulence generat ion (here  I dU/dx2 ] is large) VLa(x  2 ) is such that the fluid par t i c les  drift  to l ayers  r e l a -  
t ive to the flow at res t .  But  VLa(x 2 ) has  an opposite direct ion in these res t  zones; hence, the fluid par t i c les  
depar t  to the generat ion zone on the average  by quenching the i r  vor t ica l  energy.  There  they gather  energy 
and a re  again on the path; because  of such convection a s tat ionary turbulence mode is maintained. Let us 
note that  the relat ive drif t  of the fluid pa r t i c les ,  i.e.,  the difference between (u) La and (u), is c a u s e d b y  
fo rces  of pulsat ing or igin  - the Reynolds s t r e s s  gradients .  The t r a n s v e r s e  acce lera t ion  of the fluid par t ic le  

is 

(u~(r, t))L~= (uo.(r, t)> = ~ ( u ~  

Corresponding to the zone of maximum generat ion of turbulence in application to flow in a pipe is y = 
YG ~ 15. For  y < YG we should have VLa(x  2 ) > 0. Evidently, VLa(x ,  ) = 0 in the viscous sublayer.  In the 
region y ~ 10, apparently VLa ~ 0.1 U ,  ( VLa turns  out to be of such an o rde r  in the ex t remum zone 
d ( u l u ~ ) / d x  2 of a f ree  turbulent jet  (see Secs. 5 and 6 in [7])). For  y > yG, VLa(x  2 ) < 0. Let us put (U ' )La=  
(u  t ) in (15) (this is legi t imate only for  slightly inhomogeneous turbulence;  hence, we limit ourse lves  to a 
qualitative p ic ture  of the motion).  Then (uL}La ~ (ut) - (d/dx 2) (VLa (u) La) and for  small  b we have for  

longitudinal pa r t i c l e  mot ion 

x , -  - (<u++ - 
/ 

It follows f rom the discussion p resen ted  above that the profi le  of the change in - U V L a  is approximately 
s imi la r  to the profi le  of ( u l u  2 ). The action of both m e m b e r s  in the paren theses  is hence added. The d i rec -  
tion of the action agrees  with that which occu r r ed  for  the mass ive  par t ic les .  Hence, the r eve r s e  react ion of 
the par t i c le  on the medium is analogous in charac te r .  Since ~ L a  for  light par t ic les ,  then the specific force 
p e r  unit m a s s  of the par t ic le  is now considerably  greater .  

For  small  b we have for  t r a n s v e r s e  motion 
2 

x.~ -- VLa~ Ui~a---d (u~} ~-La b d q2. (19) 
- -  a d . % \  = - - " ~ ' = ' a  d---x+= 

T e r m s  whose smal lness  is on the o rde r  of V ~ a / q  2 a re  omitted in the equations. The essent ia l  difference 
between this equation and (17) is the p re sence  of the m e m b e r  VLa. For  y ~ 10, VLa ~ 0.1u.  and the t e rms  on 
the right in (19) a re  much less  than this quantity in es t imates  so that the drift  of soft pa r t i c les  together  with 
the fluid pa r t i c l e s  to the s t ream core  occurs  here.  The drift  veloci ty VLa(x 2 ) drops with the approach to the 
viscous sublayer.  It can be shown that the drop in VLa(x  2 ) should be m o r e  rapid than the ra te  of the drop in 
the Reynolds s t ress .  Hence, the role of the t e r m s  on the r ight in (1.9) becomes  predominant  near  the wall - 

here  x 2 < 0. Fo r  y ~ l  a n d b < < l  
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"~ ,).,2 3 ~3 
(u._5) ~ Y La---L N 2 - iO -2 * g - -  x ~  ~ 7 ~ ~) a~" ~'~ ~ ' 

where  g/a is the r a t e  of grav i ta t iona l  p rec ip i t a t ion  of pa r t i c l e s .  F o r  the example  with the a i r  stream, p r e -  
sented 2" 10 -2 u3./vg ~ 60, i .e . ,  1~2 ] >> g/a. 

Let  us note that the e s t i m a t e s  m a d e  a r e  insufficient  for  a compar i son  with tes t ,  and tes t ,  in pa r t i cu l a r ,  
ve r i f i e s  the fact  of a c c e l e r a t e d  set t l ing of p a r t i c l e s  on the wall  f rom the turbulent  s t r e a m  (see  [3-5, 12-15], 
for  example~) .  The fact  is  that  individual p a r t i c l e s  a r e  not o b s e r v e d  in expe r imen t s  (this is complex)  but the 
r a t e  of deposi t ion of a se t  of p a r t i c l e s  on the wall  o r  t he i r  dis t r ibut ion o v e r  the s t r e a m  sect ion is.  Moreover ,  
e i the r  r e q u i r e s  the solution of the diffusion p rob l em,  i .e . ,  the solution of the diffusion equation o r  the kinet ic  
equation taking account  of pulsat ing fo r ce s  and some boundary conditions. This  impor tan t  p r o b l e m  for  appl i -  
cat ions is beyond the scope of this paper .  

T h e r e f o r e ,  it is  shown that  d i s o r d e r e d  mot ions  of a pa r t i c l e ,  in which it  is  en t ra ined  by the turbulent  
medium,  r e su l t  in significant  effects ,  cumula t ive  o v e r  many  pe r iods  of turbulent  pulsa t ions .  The re la t ionship  
between the Stokes f requency of pa r t i c l e  re laxa t ion  in the s t r e a m  and the c h a r a c t e r i s t i c  f requencies  of the 
turbulence  spec t rum  hence p lays  an impor tan t  par t .  The e x t r e m e  ca se s  of " l ight"  p a r t i c l e s  (among these  a r e  
all  p a r t i c l e s  of smal l  enough s ize)  and of " m a s s i v e "  p a r t i c l e s  have been invest igated.  

Equations of  the fo rm (12) and (15), s imple  in s t ruc tu re ,  in which the Eu le r  and Lagrange  turbulence  
c h a r a c t e r i s t i c s ,  r e spec t ive ly ,  en te r ,  have been  obtained for  the ave r age  pa r t i c l e  mot ions  in both cases .  The 
equations m e r g e  well ,  which p e r m i t s  a s sumpt ion  of a poss ib l e  in terpola t ion of the r e su l t s  in the range  of 
p a r a m e t e r s  where  a ~ w e - w  La" A d i rec t  ana lys i s  in this  in te rmedia te  region is compl ica ted  because  of the 
lack  of a sma l l  p a r a m e t e r  in the p rob lem.  C ha rac t e r i s t i c  for  this region is the growth of the contr ibution to 
the a v e r a g e  mot ion  f rom the d i so rde red  p a r t i c l e  rotat ions.  The ro ta t ion  fac to r  mus t  be  taken into account  for  
light and m a s s i v e  p a r t i c l e s  only in the zone where  the turbulence  is sharply  in_homogeneous. 

The na ture  of the pa r t i c l e  dr if t  in a turbulent  s t r e a m  between pa ra l l e l  wal ls  has  been  examined  on the 
b a s i s  of (12) and (15). The theory  has  been  cons t ruc ted  for  weakly inhomogeneous turbulence;  hence,  i ts  ap-  
p l ica t ion  to this  p r o b l e m  does not a s s u r e  high accu racy  of the e s t ima te s ,  as has been  noted. However,  the 
qual i ta t ive behav io r  is v is ib ly  r e f l ec t ed  co r rec t ly .  Among the genera lqua l i t a t ive  deductions p r e s e n t e d h e r e  a re  the 
following. 1. The s ignif icance of the fo rces  of pulsa t ing  or igin  and the i r  commensurab i l i t y  (conver ted  to unit 
pa r t i c l e  mass )  with the magni tudes  of the c h a r a c t e r i s t i c  acce l e ra t ions  in the s t r eam.  2. The p r e s e n c e  of a 
wa te r shed  fo r  the pa r t i c l e  dr i f t  mot ions  t r a n s v e r s e  to the s t r e a m .  There  ex is t s  a zone where  dense  (smbll  
b)  p a r t i c l e s  " a r e  a t t r a c t e d "  to the wall ,  but a zone whe re  the p a r t i c l e s  "are  r epe l l ed"  f rom the wall  l ies  suf-  
f icient ly fa r  f r o m  the v i scous  l a y e r  (y > 5-102 ). 3. Fo r  pa r t i c l e  dr if t  longitudinal to the s t r e a m  ( for  which 
b is  smal l )  the p a r t i c l e s  leading the flow in the zone nea r  the v iscous  sub layer  and lagging the flow in the 
s t r e a m  core  a r e  cha rac t e r i s t i c .  Since the effect  is caused  by fo rces  coming f rom the medium,  then the re  
ex is t s  a r e v e r s e  reac t ion  on the s t r eam.  P a r t i c l e s  turning out to be  in the flow core  a c c e l e r a t e  it and those  
being n e a r  the wall ,  dece le ra t e  it. The re su l t an t  effect  depends on the pa r t i c l e  dis t r ibut ion ove r  the s t r e a m  
section.  The p r e s e n c e  of a smal l  ( " p a s s i v e " )  impur i ty  in an inhomogeneous turbulent  s t r e a m  does not thereby  
reduce,  as is  s o m e t i m e s  considered,  to jus t  a change in the v i scos i ty  of the medium.  In addition, the i nve r se  
t r a n s f o r m a t i o n  of turbulent  med ium mot ions  into d i rec ted  mot ions  occurs .  

Additional fo rces  of pulsat ing or ig in  on the pa r t i c l e  in a turbulent  med ium appea r  for  the s ame  phys ica l  
r e a s o n  for  which effect ive  ( s o m e t i m e s  ca l led  f ic t i t ious)  fo rces  e x p r e s s e d  in t e r m s  of the Reynolds s t r e s s  act  
on fluid p a r t i c l e s  ( i .e . ,  smal l  vo lumes  of the medium).  In t r ins ica l ly ,  the Reynolds s t r e s s e s  cause  a di f ference 
between the a v e r a g e  fluid pa r t i c l e  mot ion and the Eu le r  motion of the m e d i u m . . T h i s  c i r cums tance  has been 
taken into account  in analyzing the Lagrangian  c h a r a c t e r i s t i c s  in Sec. 4. Development  of this question p e r m i t s  
a new approach  to the descr ip t ion  of inhomogeneous turbulence.  However,  this  is the subject  of a s epa ra t e  
discussion.  

~Although the m e c h a n i s m  cons idered  for  the phenomenon is apparent ly  sufficiently effect ive,  it is  not unique. 
Many authors  tend to the fact  that the ma in  mechan ica l  fac tor  ( there  a r e  o thers ,  the pa r t i c l e  e lec t r i f ica t ion  
fac tor ,  for  example)  is that p a r t i c l e s  a r e  s o m e t i m e s  e jec ted  f rom the s t r e a m  by turbulent  gusts  and fly 
through the v i scous  l aye r  to the wall  by iner t ia .  
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